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Challenges for Accurate Electricity Forecasting

National Grid ESO fulfils a number of
Important functions, including:

» Operating and balancing the transmission
network in real time, as safely & economically
as possible (E1bn/year)

» Planning and sanctioning future
transmission system outages

* Informing the wider Electricity Market —
to enable efficient energy market operation
(day ahead market ¢ £30bn/year)
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Challenges for Accurate Electricity Forecasting

In order to fulfil these tasks, accurate national and regional short-
term transmission system demand forecasts are required

UK consumption

55000 -

45000

nationalgrid

Transmission System Demand

Transmission System Demand is lower than overall
consumption because of factors such as

- distribution connected generation, for example
- embedded wind

- embedded solar (all solar)
- other embedded technologies
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Challenges for Accurate Electricity Forecasting nationalgrid

Forecasting transmission system electricity demand

e ... due in particular to the growth of embedded
has become more difficult over the last decade ... generation & for which NGESO historically has had
limited data
000 . Solar generation in particular grew hugely due to subsidies:-

1. How to determine what solar power was being
generated?

1,200.0 12000

1,000.0 10000

2. Could we improve our solar power forecasts via
better power conversion models?

800.0 8000

3. Could weimprove our solar power forecasts via
better solar radiation forecasts?
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Installed Capacity (MW)
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Distribution connected wind also grew significantly ...

- meaning demand is now extremely weather dependent ...
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......................... 4. Were there further enhancements to our weather
forecasts that could help our demand forecasts?
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Installed PV Capacity

Tackling the above could help manage our demand forecasts
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PV Monitoring Phase 3

Modelling the outturn from solar PV in near-real-time

Jamie Taylor
LCNI 2019 Glasgow
30t October 2019
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A free public service... |mmzz= ‘f
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Using Machine Learning to predict deployed PV capacity

8000 To predict

All GB PV is embedded in the
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Parameterisation of the ANN

Overnight
minimum
demand

What drives regional electricity demand?
Or, more precisely...

What parameters can be used to explain
variance in observed demand that is not
caused by PV?
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Some preliminary results
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Find out more...
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Improved Solar Radiation Forecasting

16 www.metoffice.gov.uk  © Crown Copyright 2017, Met Office nationalgrid



Improved Solar Radiation Forecasting

WP1 - Refinements to existing solar forecasting

WP2 - Statistical post-processing for solar radiation

.| 8T02-91T02

WPS - Solr radiation nowcasing (T+6h)

WP4 - R&D of core NWP cloud/radiation schemes

17 www.metoffice.gov.uk  © Crown Copyright 2017, Met Office nationalgrid




Improved Solar Radiation Forecasting

WP1 - Refinements to existing solar forecasting

Blend MAE relative to Mean for May 2016

150 T T T T T T T T
Replace ensemble mean with multi-model optimally
weighted blend. 100 - B
5-10% improvements in solar irradiance Mean Absolute
Error. 50 N

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
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Improved Solar Radiation Forecasting

WP2 - Statistical

Reviewed a number of statistical techniques.
Implemented a Kalman Filter bias correction.

Day 1 forecast improvement giving a further reduction in blend MAE of
1-2%
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post-processing for solar radiation
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Improved Solar Radiation Forecasting

WP3 - Solar radiation nowcasting (T+6h)

Use satellite cloud to refine model cloud forecast.

65 0 70%

. ~
oper UnMod TOA Fraction % Tue 04/07/2017 06:00 oper Mowc TOA Fraction % Tue 04/07/2017 06:00
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WP4 - R&D of core NWP cloud/radiation schemes

B993 20* Jan 2017 40 profiles
MODIS 12:35Z

Detailed investigation into cloud biases
Exploit observational campaigns
Focus upon low, shallow cloud sheets

Enhancements to NWP cloud schemes scheduled for future operational releases

Benefits propagate beyond National Grid and the Energy Sector into any cloud-
sensitive industry application.

www.metoffice.gov.uk ~ © Crown Copyright 2017, Met Office nationalgrid
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Background

 Motivation: can the accuracy of demand forecasts be
improved through changes to the weather feeds?

 Data: Provided with 2 weather datasets A and B.

No. of weather 53
stations

Forecast horizon EEEVWS

Temporal 1 hour

resolution
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_ Dataset A |Dataset B
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Pink stations in both datasets, purple
stations only in dataset B.
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Temporal Analysis

Question: How often should we get new weather forecasts?

Wind speed absolute errors for Forecasting Point 10:00 National Demand absolute errors for Forecasting Point 10:00
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National Demand Weather = Weather regression model — PV — Embedded Wind
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Temporal Analysis

« Guided by NGESO we consider refreshing a forecast worthwhile when a
forecast has improved by 10MW or more.

National Demand absolute errors for Forecasting Point 15:00
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Recommendations

Increase the frequency of delivery of weather forecasts. NEW: 24 % 12 hours ahead

OLD: 4 x 14 days ahead 8 x 7 days ahead
2 x 14 days ahead

e Distance between weather stations and highest capacity generation should be minimised
e Focus should be given to weather variables which impact power forecast accuracy most

e Recommendations are mostly ‘common sense’, the key contribution of this project was to
guantify the likely benefits and provide practical steps to achieving them

e Recommendations were also made for modelling improvements based on a literature review
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Machine Learning based Solar Generation Forecasts

30

In 2017 we embarked on a 3month NIA project with
the Alan Turing Institute for Data Science
(NIA_NGSO0001) "

d

Investigated advanced statistical & machine learning

temperature

€g direction
PCA
oad PCA

The
Alan Turing
Institute

Historic Data

Filter

peea

wind

- Weather m Dimensionality Reduction
techniques to the forecasts of solar power & Forecast Principle edbees ot
developed prototype algorithm based on random Processing  Load PCA Component otiree P
forest regression — VS
Load|_Models ] Predictions
models LPI Models | Ensemble of ML/DL models
In the first half of 2018, NGESO explored a number AD G RF XG ML IS GB IS
) ) Machine
Correction of weather data according to recent learning e
b i algorithms Nowcasting
opservations Adjust Forecast
. . . v National
Addition of further machine learning approaches Publish Forecasts Solar
|_Post Output_| Forecast

Use of a ‘meta-model’ to select best combination
of constituent machine learning forecasts
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Machine Learning based Solar Generation Forecasts

MAE RMSE
» During testing, the ML forecasts were assessed T e meta|
to be around 33% (c. 150MW) more accurate a0 ]
(MAE) compared to the existing system %
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« New ML based solar power forecasts were
incorporated directly into the operational process
for calculating demand in Septl8
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https://www.nationalgrideso.com/news/eso-and-alan-turing-institute-use-machine-learning-help-balance-gb-electricity-grid
https://www.turing.ac.uk/research/impact-stories/towards-greener-grid

Implementation of these Projects

Solar outturn estimates:-

- Aprill6 SS national solar outturns used by NGESO to build better national solar forecasts
Improved Solar Power Conversion models:-

- Septl8 NGESO ML national solar power forecast based on Turing NIA is operational
Improved Solar Radiation forecasts:-

- May17 MO blended solar radiation forecasts brought into weather forecasts

- Septl8 MO Kalman-Filtered solar radiation forecasts brought into weather forecasts
Improved Optimisation of Weather Services:-

- Summerl9 Smith: 12 x MO forecasts per day (up from 4), System speed improvements

... other improvements (wind generation / GSP improvements) also !
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Future Electricity Forecasting Challenges

Whilst many issues related to solar generation have been addressed & we are now implementing improved weather

services, the future will still present challenges ...

FES19 indicates potential increases
of solar & emb. wind capacities from ~
13 & 6GW today to up to 20GW & 7GW
(CR Scenario) in 2025, yet visibility
decreasing due to loss of subsidy

registration for example

Maintaining & improving existing embedded models ...

Solar, embedded wind

Tackling other high impact types of embedded
generation ...

FES19 indicates potential increases
of other embedded tech from ~

14GW today to 22GW (CR Scenario)
in 2025 — including batteries/head-
pumps etc. Similar visibility issues.

Growth of other embedded technologies, and new
technologies / operating regimes from batteries,
EV, Heat-pumps etc

The Energy Forecasting team at NGESO also forecasts
weather-dependent generation which participates in the
Balancing Mechanism ...

FES19 indicates potential increases
of transmission system connected
wind from ~ 13GW today to 33GW
(Two Degrees Scenario) in 2025

From Dec19, wider access to the BM will introduce many new
aggregators/generators above 1MW, and some FES19
scenarios indicate up to 33GW Tx wind maybe connected by 2025

34

Initiatives being discussed at
eg BEIS Energy Data Task
Force ie mandatory Asset
Registration & others

Metered data — since 2018
NGESO obtained access to
metering from ElectraLink.
Holds great potential after
further data processing

New analytics/models
needed for accurate
demand and
generation forecasting
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